We introduce a simulation-based, amortised Bayesian inference scheme to infer the parameters of random walks. Our approach learns the posterior distribution of the walks' parameters with a likelihood-free method. In the first step a graph neural network is trained on simulated data to learn optimized low-dimensional summary statistics of the random walk. In the second step an invertible neural network generates the posterior distribution of the parameters from the learnt summary statistics using variational inference. We apply our method to infer the parameters of the fractional Brownian motion model from single trajectories. The computational complexity of the amortized inference procedure scales linearly with trajectory length, and its precision scales similarly to the Cram{\'e}r-Rao bound over a wide range of lengths. The approach is robust to positional noise, and generalizes well to trajectories longer than those seen during training. Finally, we adapt this scheme to show that a finite decorrelation time in the environment can furthermore be inferred from individual trajectories.
翻译:我们引入了一个基于模拟的、摊销的贝耶斯人的推论方案来推断随机行走的参数。 我们的方法是用一种没有可能性的方法来学习行走参数的后部分布。 第一步, 图形神经网络接受模拟数据培训, 学习随机行走的优化低维摘要统计。 第二步, 一个不可忽略的神经网络使用变式推论法, 生成所学的简要统计的参数的后部分布。 我们运用了我们的方法, 从单轨中推断分数布朗运动模型的参数。 摊销推算过程的计算复杂性与轨距长度线性相当, 其精确度与Cram_'e}r- Rao相近, 长度范围很广。 这种方法对定位噪音很有力, 并且一般化到轨迹比训练期间所看到的要长。 最后, 我们调整了这个方法, 以显示环境中一定的调控时间可以从单个轨迹中进一步推断出。