Researchers are often faced with evaluating the effect of a policy or program that was simultaneously initiated across an entire population of units at a single point in time, and its effects over the targeted population can manifest at any time period afterwards. In the presence of data measured over time, Bayesian time series models have been used to impute what would have happened after the policy was initiated, had the policy not taken place, in order to estimate causal effects. However, the considerations regarding the definition of the target estimands, the underlying assumptions, the plausibility of such assumptions, and the choice of an appropriate model have not been thoroughly investigated. In this paper, we establish useful estimands for the evaluation of large-scale policies. We discuss that imputation of missing potential outcomes relies on an assumption which, even though untestable, can be partially evaluated using observed data. We illustrate an approach to evaluate this key causal assumption and facilitate model elicitation based on data from the time interval before policy initiation and using classic statistical techniques. As an illustration, we study the Hospital Readmissions Reduction Program (HRRP), a US federal intervention aiming to improve health outcomes for patients with pneumonia, acute myocardial infraction, or congestive failure admitted to a hospital. We evaluate the effect of the HRRP on population mortality among the elderly across the US and in four geographic subregions, and at different time windows. We find that the HRRP increased mortality from pneumonia and acute myocardial infraction across at least one geographical region and time horizon, and is likely to have had a detrimental effect on public health.


翻译:研究人员往往面临评估在某一时间点对各单位全体人口同时启动的政策或方案的影响,而该政策或方案对目标人口的影响在其后任何时间段都可能显现出来。在有长期数据的情况下,如果政策没有实施,贝叶西亚时间序列模型就被用来估算政策启动后可能发生的情况,以便估计因果关系。然而,对于目标估计的定义、基本假设、此类假设的可信任性以及适当模式的选择等考虑,还没有进行彻底调查。在本文件中,我们为评估大规模政策制定了有用的估算值。我们讨论的是,对缺失的潜在结果的估算值取决于一种假设,这种假设即使无法检验,也可以使用观察到的数据对政策启动后发生的情况进行部分评估。我们展示了一种方法来评估这一关键因果关系假设,并根据政策启动之前的间隔数据以及使用典型的统计技术,我们研究了医院阅读减少方案(HRRP ),这是美国联邦的一项最低限度的干预,旨在改进大规模政策评估的地域风险。 我们讨论的是,在医院和四个地区,我们对于癌症的死亡率和心脏病的死亡率,我们从一个时间段里,我们从病变的死亡率评估了一种时间段,我们对癌症的死亡率的死亡率和心脏病和心脏病的死亡率的死亡率的诊断,我们对四个地区的死亡率进行了评估。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
0+阅读 · 2022年12月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员