In this paper we consider three kinds of fully discrete time-stepping schemes for the nonstationary $3$D magneto-micropolar equations that describes the microstructure of rigid microelements in electrically conducting fluid flow under some magnetic field. The first scheme is comprised of the Euler semi-implicit discretization in time and conforming finite element/stabilized finite element in space. The second one is based on Crank-Nicolson discretization in time and extrapolated treatment of the nonlinear terms such that skew-symmetry properties are retained. We prove that the proposed schemes are unconditionally energy stable. Some optimal error estimates for the velocity field, the magnetic field, the micro-rotation field and the fluid pressure are obtained. Furthermore, we establish some fully discrete first-order decoupled time-stepping algorithms. Numerical tests are provided to check the theoretical rates and unconditionally energy stable.
翻译:在本文中,我们考虑了三种完全独立的非静止的3美元D磁极-微极方程式时间分步制计划,其中描述了在某些磁场下进行电流流流中硬微分子的微结构。第一个方案由Euler半隐性分解和符合空间的有限分解元素/稳定定点元素组成。第二个方案以Crank-Nicolson时间分解和对非线性术语的外推处理为基础,例如保留了对称性特性。我们证明,拟议的方案是无条件的能源稳定。对速度场、磁场、微调场和液体压力进行了一些最佳的误差估计。此外,我们建立了一些完全独立的一级分解的分解时间步算算法。提供了数值测试,以检查理论率和无条件的能源稳定。</s>