We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel $\mathcal E$ mapping $\rho_1^{\otimes n}$ into $\rho_2^{\otimes R_nn}$ with an error $\epsilon_n$ (measured by trace distance) and $\sigma_1^{\otimes n}$ into $\sigma_2^{\otimes R_n n}$ exactly, for a large number $n$. We derive second-order asymptotic expressions for the optimal transformation rate $R_n$ in the small, moderate, and large deviation error regimes, as well as the zero-error regime, for an arbitrary pair $(\rho_1,\sigma_1)$ of initial states and a commuting pair $(\rho_2,\sigma_2)$ of final states. We also prove that for $\sigma_1$ and $\sigma_2$ given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.


翻译:我们处理的是,在无止痛性能系统中,精确和大致地将量子二分位数转换成美元,也就是说,对于一大笔美元,我们有一个量子频道 $mathcal E$ $ mathcal E$ 映射$rho_1<unk> otimes R_nn} 美元,而对于一对任意的一对美元(以痕量距离衡量)和1美元(以血清距离衡量)和1美元/gma_1<unk> otime n}美元,准确和大约地将量量的二分位数转换成美元,也就是说,我们有一个量级的量级数据输入量 $gma_2°n}。我们从二分级的量级数据输入量表示最佳转换率 $R_n$, 在小、中度和大偏差偏差误差误差的误差制度下,零度制度,对于一对初始州(rho_1,1美元)和最后一对量级的一对价, 我们也可以通过一级结果1美元 和第二个量级的量级流流流流转换, 和这个精确的运行 将最优化的运行 进行最优化的温度分析。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员