Conventional salient object detection models cannot differentiate the importance of different salient objects. Recently, two works have been proposed to detect saliency ranking by assigning different degrees of saliency to different objects. However, one of these models cannot differentiate object instances and the other focuses more on sequential attention shift order inference. In this paper, we investigate a practical problem setting that requires simultaneously segment salient instances and infer their relative saliency rank order. We present a novel unified model as the first end-to-end solution, where an improved Mask R-CNN is first used to segment salient instances and a saliency ranking branch is then added to infer the relative saliency. For relative saliency ranking, we build a new graph reasoning module by combining four graphs to incorporate the instance interaction relation, local contrast, global contrast, and a high-level semantic prior, respectively. A novel loss function is also proposed to effectively train the saliency ranking branch. Besides, a new dataset and an evaluation metric are proposed for this task, aiming at pushing forward this field of research. Finally, experimental results demonstrate that our proposed model is more effective than previous methods. We also show an example of its practical usage on adaptive image retargeting.


翻译:常规显著天体探测模型无法区分不同显著天体的重要性。 最近, 提出了两部工程, 通过给不同天体指定不同程度的显著程度来检测显著等级。 但是, 其中一部模型无法区分对象实例, 另一部则更侧重于顺序关注变化顺序推导。 在本文中, 我们调查了一个实际问题设置, 需要同时同时进行分级突出事件, 并推断出其相对显著等级顺序。 我们提出了一个新颖的统一模型, 作为第一个端端到端解决方案, 最初将改进的面具 R- CN 用于分级突出事件, 然后添加一个突出等级分支来推断相对显著性。 关于相对显著性排名, 我们通过合并四个图表来构建一个新的图表推理模块, 分别将实例互动关系、 地方对比、 全球对比和 高级语义分别合并在一起。 我们还提议了一个新的损失函数, 以有效培训突出的分级部门。 此外, 为这项任务提出了一个新的数据集和评估指标, 目的是推进这一研究领域。 最后, 实验结果表明我们提议的模型比以前的方法更有效。 我们还展示了其实际适应性图像的范例。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关VIP内容
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员