Multifidelity methods are widely used for statistical estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information of the QoIs. In this paper, we introduce a semi-parametric approach that aims to effectively describe the distribution of a scalar-valued QoI in the multifidelity setup. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric reconstruction. Assuming the linear model is correct, we prove that such a procedure is consistent, and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. A major advantage of our approach compared to several other multifidelity methods is that it is automatic, and its implementation does not require a hierarchical model setup, cross-model information, or \textit{a priori} known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.
翻译:利用不同成本和理解度的模拟代码,广泛使用多纤维化方法统计估算在不确定性方面的兴趣数量(QoIs),使用不同成本和理解度的模拟代码,广泛使用多纤维化方法进行统计估计。许多方法大致为数字价值统计,这些方法仅代表QoI的有限信息。在本文中,我们采用了半参数法,旨在有效描述多纤维化设置中标价的QoI的分布情况。在线性模型假设下,我们建议采用探索-开发战略,利用低纤维递增者一组样本,重新全面分配降价的QoI。我们得出了一个信息信息信息量的偏差(Wasserstein ) 和真实分布之间的平均距离为1 - Wasser Stein 。我们的方法的主要优势是,比其他等级化估算和非负数的模型化分析是先期性。我们的方法比其他等级化的先期性分析是先期性分析。我们的方法要求有多种等级化方法。