In this paper, we consider the problem of protecting a high-value unit from inadvertent attack by a group of agents using defending robots. Specifically, we develop a control strategy for the defending agents that we call "dog robots" to prevent a flock of "sheep agents" from breaching a protected zone. We take recourse to control barrier functions to pose this problem and exploit the interaction dynamics between the sheep and dogs to find dogs' velocities that result in the sheep getting repelled from the zone. We solve a QP reactively that incorporates the defending constraints to compute the desired velocities for all dogs. Owing to this, our proposed framework is composable \textit{i.e.} it allows for simultaneous inclusion of multiple protected zones in the constraints on dog robots' velocities. We provide a theoretical proof of feasibility of our strategy for the one dog/one sheep case. Additionally, we provide empirical results of two dogs defending the protected zone from upto ten sheep averaged over a hundred simulations and report high success rates. We also demonstrate this algorithm experimentally on non-holonomic robots. Videos of these results are available at https://tinyurl.com/4dj2kjwx.
翻译:在本文中,我们考虑保护一个高价值单位不受一群使用保护机器人的代理人无意攻击的问题。 具体地说, 我们为辩护代理人制定了一种控制战略, 我们称之为“ 狗机器人”, 以防止一群“ 羊剂” 侵入保护区。 我们利用控制屏障功能来造成这个问题, 利用绵羊和狗之间的相互作用动态来寻找导致绵羊被从该区击退的狗速度。 我们以反应方式解决了一种QP, 其中包括了计算所有狗理想速度的防御限制。 由于这个原因, 我们提议的框架允许同时将多个保护区纳入对狗机器人速度的限制之中。 我们从理论上证明我们的战略对于一只狗/一只羊来说是可行的。 此外, 我们提供了两只狗保护保护区的经验性结果, 从100次的模拟中平均到10只绵羊, 和报告高成功率。 我们还在非Holomomik/ 4 机器人上展示了这种实验性算法。 这些视频结果在非Hylomik / MAgs 4 上可以找到。