Story visualization presents a challenging task in text-to-image generation, requiring not only the rendering of visual details from text prompt but also ensuring consistency across images. Recently, most approaches address inconsistency problem using an auto-regressive manner conditioned on previous image-sentence pairs. However, they overlook the fact that story context is dispersed across all sentences. The auto-regressive approach fails to encode information from susequent image-sentence pairs, thus unable to capture the entirety of the story context. To address this, we introduce TemporalStory, leveraging Spatial-Temporal attention to model complex spatial and temporal dependencies in images, enabling the generation of coherent images based on a given storyline. In order to better understand the storyline context, we introduce a text adapter capable of integrating information from other sentences into the embedding of the current sentence. Additionally, to utilize scene changes between story images as guidance for the model, we propose the StoryFlow Adapter to measure the degree of change between images. Through extensive experiments on two popular benchmarks, PororoSV and FlintstonesSV, our TemporalStory outperforms the previous state-of-the-art in both story visualization and story continuation tasks.
翻译:暂无翻译