In order to characterize the fluctuation between the ergodic limit and the time-averaging estimator of a full discretization in a quantitative way, we establish a central limit theorem for the full discretization of the parabolic stochastic partial differential equation. The theorem shows that the normalized time-averaging estimator converges to a normal distribution with the variance being the same as that of the continuous case, where the scale used for the normalization corresponds to the temporal strong convergence order of the considered full discretization. A key ingredient in the proof is to extract an appropriate martingale difference series sum from the normalized time-averaging estimator so that the convergence to the normal distribution of such a sum and the convergence to zero in probability of the remainder are well balanced. The main novelty of our method to balance the convergence lies in proposing an appropriately modified Poisson equation so as to possess the space-independent regularity estimates. As a byproduct, the full discretization is shown to fulfill the weak law of large numbers, namely, the time-averaging estimator converges to the ergodic limit in probability.


翻译:为了从数量上说明完全离散限制和完全离散时间平均估计值之间的波动特点,我们为抛物线切除部分偏差方程的完全离散设定了一个中央限值。该定理表明,正常时间-稳定估计值与正常分布相融合,差异与连续情况相同,为正常化所用的比值与考虑完全离散的时间强烈趋同顺序相对应。证据中的一个关键成分是从正常时间-稳定估计值中提取出一个适当的马丁差数序列和,以便与这种总和的正常分布的趋同和其余部分的概率为零的趋同十分平衡。我们平衡趋同方法的主要新颖之处在于提出一个经过适当修改的波瓦森方程,以便拥有依赖空间的规律性估计值。作为副产品,完全离散化证明能够满足大量数字的薄弱法则,即时间-稳定估计值与概率的临界值趋同。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员