Conducting efficient performance estimations of neural architectures is a major challenge in neural architecture search (NAS). To reduce the architecture training costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs by sharing the parameters of one "supernet" between all architectures. Recently, zero-shot estimators (ZSEs) that involve no training are proposed to further reduce the architecture evaluation cost. Despite the high efficiency of these estimators, the quality of such estimations has not been thoroughly studied. In this paper, we conduct an extensive and organized assessment of OSEs and ZSEs on five NAS benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically, we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs and reveal that they have certain biases and variances. After analyzing how and why the OSE estimations are unsatisfying, we explore how to mitigate the correlation gap of OSEs from several perspectives. Through our analysis, we give out suggestions for future application and development of efficient architecture performance estimators. Furthermore, the analysis framework proposed in our work could be utilized in future research to give a more comprehensive understanding of newly designed architecture performance estimators. All codes are available at https://github.com/walkerning/aw_nas.
翻译:对神经结构进行高效的性能估计是神经结构搜索(NAS)的一大挑战。为了降低NAS的建筑培训成本,通过在所有结构之间共享一个“超级网”参数来分摊建筑培训成本。最近,建议采用一系列没有培训的零光估计(ZSeses)来研究建筑评估成本,以进一步降低建筑评估成本。尽管这些估计者的效率很高,但这种估计的质量还没有得到彻底研究。在本文中,我们根据NAS的五项基准(NAS-Bench-101/201/301和NDS ResNet/ResNeXt-A)对OS和ZESE进行了广泛和有组织的评估。具体地说,我们采用一套面向NAS的零点度估计(Zeseses)标准来研究OSeses和Zeseseseses(Zeses)的行为,并表明它们存在某些偏差和差异。在分析OESE估计如何和为什么不满意之后,我们探索如何从若干角度缩小OESS的相互关系差距。通过我们的分析,我们利用了未来对未来业绩分析结构进行新的分析时,我们利用了对未来分析框架进行新的分析。我们利用了对未来分析。