The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS), significantly enhancing road safety and vehicular communication. However, the intricate and dynamic nature of VANETs presents formidable challenges, particularly in vehicle-to-infrastructure (V2I) communications. Roadside Units (RSUs), integral components of VANETs, are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks. These vulnerabilities pose grave risks to road safety, potentially leading to traffic congestion and vehicle malfunctions. Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity. Our study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs and address this gap. This framework enables real-time monitoring and efficient threat detection while also improving computational efficiency and reducing data transmission delay for increased energy efficiency and hardware durability. Our framework outperforms existing solutions in resource management and attack detection. It reduces RSU load and data transmission delay while achieving an optimal balance between resource consumption and high attack detection effectiveness. This highlights our commitment to secure and sustainable vehicular communication systems for smart cities.
翻译:暂无翻译