The Weibull distribution, with shape parameter $k>0$ and scale parameter $\lambda>0$, is one of the most popular parametric distributions in survival analysis with complete or censored data. Although inference of the parameters of the Weibull distribution is commonly done through maximum likelihood, it is well established that the maximum likelihood estimate of the shape parameter is inadequate due to the associated large bias when the sample size is small or the proportion of censored data is large. This manuscript demonstrates how the Bayesian information-theoretic minimum message length principle coupled with a suitable choice of weakly informative prior distributions, can be used to infer Weibull distribution parameters given complete data or data with type I censoring. Empirical experiments show that the proposed minimum message length estimate of the shape parameter is superior to the maximum likelihood estimate and appears superior to other recently proposed modified maximum likelihood estimates in terms of Kullback-Leibler risk. Lastly, we derive an extension of the proposed method to data with type II censoring.
翻译:Weibull分布是生存分析中最受欢迎的参数分布之一,具有形状参数$k>0$和尺度参数$\lambda>0$,常常通过最大似然推断其参数。然而,众所周知,当样本量较小或截尾数据的比例较大时,Weibull分布形状参数的最大似然估计是不足够的,因为它伴随有较大的偏差。本文展示了如何采用贝叶斯信息论的最小消息长度原则以及适当选择弱先验分布,推断给定完全数据或类型I截尾数据的Weibull分布参数。实证实验表明,所提出的最小消息长度估计对形状参数的估计优于最大似然估计,并且在Kullback-Leibler风险方面也优于其他最近提出的改进最大似然估计。最后,我们推导了将所提出的方法扩展到类型II截尾数据的情况。