Data-driven approaches such as deep learning can result in predictive models for material properties with exceptional accuracy and efficiency. However, in many applications, data is sparse, severely limiting their accuracy and applicability. To improve predictions, techniques such as transfer learning and multitask learning have been used. The performance of multitask learning models depends on the strength of the underlying correlations between tasks and the completeness of the data set. Standard multitask models tend to underperform when trained on sparse data sets with weakly correlated properties. To address this gap, we fuse deep-learned embeddings generated by independent pretrained single-task models, resulting in a multitask model that inherits rich, property-specific representations. By reusing (rather than retraining) these embeddings, the resulting fused model outperforms standard multitask models and can be extended with fewer trainable parameters. We demonstrate this technique on a widely used benchmark data set of quantum chemistry data for small molecules as well as a newly compiled sparse data set of experimental data collected from literature and our own quantum chemistry and thermochemical calculations.


翻译:深度学习方法等数据驱动技术能够构建具有卓越精度和效率的材料性质预测模型。然而,在许多应用场景中,数据稀疏性严重制约了模型的准确性和适用性。为提升预测性能,迁移学习和多任务学习等技术已被广泛采用。多任务学习模型的性能取决于任务间潜在相关性的强度以及数据集的完整性。当在稀疏数据集上训练弱相关性质时,标准多任务模型往往表现欠佳。为弥补这一不足,我们融合了由独立预训练单任务模型生成的深度嵌入表示,构建出能够继承丰富且性质特异性表征的多任务模型。通过复用(而非重新训练)这些嵌入表示,所得融合模型在减少可训练参数的同时,其性能超越了标准多任务模型。我们在小分子量子化学数据的常用基准数据集以及新构建的稀疏实验数据集上验证了该技术的有效性,其中实验数据来源于文献汇编及我们自主完成的量子化学与热化学计算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员