Knowledge-aware question answering (KAQA) requires the model to answer questions over a knowledge base, which is essential for both open-domain QA and domain-specific QA, especially when language models alone cannot provide all the knowledge needed. Despite the promising result of recent KAQA systems which tend to integrate linguistic knowledge from pre-trained language models (PLM) and factual knowledge from knowledge graphs (KG) to answer complex questions, a bottleneck exists in effectively fusing the representations from PLMs and KGs because of (i) the semantic and distributional gaps between them, and (ii) the difficulties in joint reasoning over the provided knowledge from both modalities. To address the above two problems, we propose a Fine-grained Two-stage training framework (FiTs) to boost the KAQA system performance: The first stage aims at aligning representations from the PLM and the KG, thus bridging the modality gaps between them, named knowledge adaptive post-training. The second stage, called knowledge-aware fine-tuning, aims to improve the model's joint reasoning ability based on the aligned representations. In detail, we fine-tune the post-trained model via two auxiliary self-supervised tasks in addition to the QA supervision. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMILE) domains.


翻译:知识意识问题解答(KAQA)要求该模型回答知识库问题,而知识库对于开放域名质量评估以及特定域名质量评估都至关重要,特别是语言模型无法提供所需的全部知识。尽管最近的KAQA系统往往将预先培训语言模型的语言知识和知识图(KG)中的事实知识结合起来,以回答复杂问题,但是在有效发挥PLMs和KGs代表作用方面存在瓶颈,因为(一) 它们之间的语义和分布差距,以及(二) 对这两种模式提供的知识的联合推理困难。为了解决上述两个问题,我们提议一个精细的两阶段培训框架(FITs),以提高KAQA系统的业绩:第一阶段旨在协调PLM和KG的表述,从而缩小它们之间的模式差距,称为知识适应后培训。第二阶段,即知识意识调整,目的是提高模型在统一模型、共同版本中提供的联合推理能力。我们通过测试三阶段的自我分析,通过自我分析,在三个阶段,我们通过自我分析的自我分析,在A级标准中,通过自我分析的自我分析,在三个阶段,在A-Q。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员