We propose Riemannian Flow Matching (RFM), a simple yet powerful framework for training continuous normalizing flows on manifolds. Existing methods for generative modeling on manifolds either require expensive simulation, inherently cannot scale to high dimensions, or use approximations to limiting quantities that result in biased objectives. Riemannian Flow Matching bypasses these inconveniences and exhibits multiple benefits over prior approaches: It is completely simulation-free on simple geometries, it does not require divergence computation, and its target vector field is computed in closed form even on general geometries. The key ingredient behind RFM is the construction of a simple kernel function for defining per-sample vector fields, which subsumes existing Euclidean cases. Extending to general geometries, we rely on the use of spectral decompositions to efficiently compute kernel functions. Our method achieves state-of-the-art performance on real-world non-Euclidean datasets, and we showcase, for the first time, tractable training on general geometries, including on triangular meshes and maze-like manifolds with boundaries.
翻译:我们提出里曼尼流动匹配(RFM),这是一个简单而有力的框架,用于培训不断正常流体的流程。 现有的元体基因模型模型模型方法要么需要昂贵的模拟,从本质上说无法达到高尺寸,要么使用近似值限制导致偏向目标的数量。 里曼尼尼雅流动匹配绕过这些不便,并比先前的方法具有多重好处:对于简单的几何而言,它完全没有模拟,不需要进行差异计算,其目标矢量字段甚至以封闭的形式进行计算。 RFM 的关键成分是构建一个简单的内核功能,用于定义每颗粒的矢量字段,其中包含现有的Euclidean 案例。 推广到一般的地理特征,我们依靠光谱分解位置来有效地配置内核功能。 我们的方法在现实世界非欧洲的数据集中达到了最先进的性能,我们第一次展示了一般地貌的可移植培训,包括三角内嵌和像木质的外框。