Solving transport problems, i.e. finding a map transporting one given distribution to another, has numerous applications in machine learning. Novel mass transport methods motivated by generative modeling have recently been proposed, e.g. Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) implement such a transport through a Stochastic Differential Equation (SDE) or an Ordinary Differential Equation (ODE). However, while it is desirable in many applications to approximate the deterministic dynamic Optimal Transport (OT) map which admits attractive properties, DDMs and FMMs are not guaranteed to provide transports close to the OT map. In contrast, Schr\"odinger bridges (SBs) compute stochastic dynamic mappings which recover entropy-regularized versions of OT. Unfortunately, existing numerical methods approximating SBs either scale poorly with dimension or accumulate errors across iterations. In this work, we introduce Iterative Markovian Fitting, a new methodology for solving SB problems, and Diffusion Schr\"odinger Bridge Matching (DSBM), a novel numerical algorithm for computing IMF iterates. DSBM significantly improves over previous SB numerics and recovers as special/limiting cases various recent transport methods. We demonstrate the performance of DSBM on a variety of problems.
翻译:解决传输问题,即查找将一个给定分布转换为另一个分布的映射,在机器学习中具有广泛的应用。最近提出了由生成建模驱动的新型质量输运方法,例如,去噪扩散模型(DDM)和流匹配模型(FMM)通过随机微分方程(SDE)或常微分方程(ODE)实现了这种输运。然而,虽然在许多应用中,近似确定动态最优输运(OT)映射是可取的,但DDMs和FMMs无法保证提供接近OT映射的输运。相反,薛定谔桥(SB)计算回复熵正则化版本的OT的随机动态映射。不幸的是,现有的近似SB的数值方法在维度方面的可伸缩性较差,或在迭代过程中积累误差。在这项工作中,我们介绍了迭代马尔可夫拟合,一种用于解决SB问题的新方法,以及扩散薛定谔桥匹配(DSBM),一种计算IMF迭代的新型数值算法。DSBM显着提高了以前的SB数值方法,并作为特殊/限制情况下恢复了各种最近的输运方法。我们展示了DSBM在各种问题上的性能。