项目名称: 三维空间Ge/Si量子点阵红外探测材料的溅射生长机理及其物性研究

项目编号: No.11274266

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杨宇

作者单位: 云南大学

项目金额: 93万元

中文摘要: Si储量丰富、成本低廉,在微电子技术领域占统治地位。三维空间Ge/Si量子点阵可不受Si、Ge间接带隙光跃迁需声子参与的影响,而成为新型的高效光电材料。项目采用可产业化的溅射生长技术,进行Ge/Si量子点阵生长的物理机制及其光电性能研究。理论上采用格林函数、分子动力学及Monte-Carlo方法等,计算模拟溅射沉积量子点阵过程中表面原子行为,探索三维空间量子点阵自发均匀、有序化生长的新方法和自组织Ge/Si量子点阵控制生长的新理论。实验上研究溅射生长温度、沉积速率、Ge与Si原子的沉积量、热处理工艺等动力学、热力学条件的变化,以及由此产生的各种物理效应对生长空间量子点阵的影响;进行微结构、光电性能表征及三维量子点阵空间反演图像研究,获得高响应率的空间量子点阵探测材料。揭示溅射三维Ge/Si量子点阵可控生长的物理机制,进一步应用于红外探测材料的研制实践,为实现硅基材料的光电子集成奠定基础。

中文关键词: Ge/Si;三维量子点阵;溅射;机理;物性

英文摘要: Silicon is the key materials in the filed of microelectronics technology, which has abundant reserves and low production cast. Bulk silicon is an indirect bandgap semiconductor, and therefore has very low light emission efficiency. The three dimensional Ge/Si quantum dot array will become a new high-efficiency photoelectric material because the transition between electrons and holes don't need phonons assist. Based on the industrialized fabrication of sputtering technology,this project proposed research on the physical mechanism and the photoelectric properties of Ge/Si quantum dot array. For this study, in theory, the green's function method, molecular dynamics and Monte-Carlo method are used to simulate sputtering deposition in the process of surface atomic behavior of quantum dot array. We explore new methods for spontaneous uniform, ordered grown three dimensional space quantum dot arrays, and a new theory for the control grown organization Ge/Si quantum dot array. Experimentally sputtering growth temperature, growth rate, Ge and Si atomic precipitation amount, and heat treatment process on dynamics and thermodynamics condition are researched, and their resulting various physical effect are considered for the growth of space quantum dot array. Microstructure and photoelectric performances of samples are ch

英文关键词: Ge/Si;Quantum-dots 3D matrix;Sputtering;Growth mechanism;QDs propertise

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员