Deep learning has enjoyed much recent success, and applying state-of-the-art model learning methods to controls is an exciting prospect. However, there is a strong reluctance to use these methods on safety-critical systems, which have constraints on safety, stability, and real-time performance. We propose a framework which satisfies these constraints while allowing the use of deep neural networks for learning model uncertainties. Central to our method is the use of Bayesian model learning, which provides an avenue for maintaining appropriate degrees of caution in the face of the unknown. In the proposed approach, we develop an adaptive control framework leveraging the theory of stochastic CLFs (Control Lyapunov Functions) and stochastic CBFs (Control Barrier Functions) along with tractable Bayesian model learning via Gaussian Processes or Bayesian neural networks. Under reasonable assumptions, we guarantee stability and safety while adapting to unknown dynamics with probability 1. We demonstrate this architecture for high-speed terrestrial mobility targeting potential applications in safety-critical high-speed Mars rover missions.


翻译:深层学习最近取得了许多成功,运用最先进的示范学习方法来进行控制是一个令人振奋的前景。然而,对于安全临界系统,我们非常不愿意使用这些方法,这些方法限制了安全、稳定和实时性能。我们提议了一个满足这些限制的框架,同时允许利用深神经网络来学习模型不确定性。我们方法的核心是使用贝叶斯模式学习,这为面对未知情况保持适当的谨慎度提供了一个途径。在拟议办法中,我们开发了一个适应性控制框架,利用随机CLF(控制Lyapunov功能)和随机CBF(控制屏障功能)理论,以及通过高山进程或巴伊斯神经网络进行可移动的贝斯模式学习。根据合理的假设,我们保证稳定和安全,同时适应未知的概率1。我们展示了这种高速地面流动结构,针对安全临界高速火星巡航任务的潜在应用。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2018年12月26日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员