Robotic systems are more present in our society everyday. In human-robot environments, it is crucial that end-users may correctly understand their robotic team-partners, in order to collaboratively complete a task. To increase action understanding, users demand more explainability about the decisions by the robot in particular situations. Recently, explainable robotic systems have emerged as an alternative focused not only on completing a task satisfactorily, but also on justifying, in a human-like manner, the reasons that lead to making a decision. In reinforcement learning scenarios, a great effort has been focused on providing explanations using data-driven approaches, particularly from the visual input modality in deep learning-based systems. In this work, we focus rather on the decision-making process of reinforcement learning agents performing a task in a robotic scenario. Experimental results are obtained using 3 different set-ups, namely, a deterministic navigation task, a stochastic navigation task, and a continuous visual-based sorting object task. As a way to explain the goal-driven robot's actions, we use the probability of success computed by three different proposed approaches: memory-based, learning-based, and introspection-based. The difference between these approaches is the amount of memory required to compute or estimate the probability of success as well as the kind of reinforcement learning representation where they could be used. In this regard, we use the memory-based approach as a baseline since it is obtained directly from the agent's observations. When comparing the learning-based and the introspection-based approaches to this baseline, both are found to be suitable alternatives to compute the probability of success, obtaining high levels of similarity when compared using both the Pearson's correlation and the mean squared error.


翻译:在人类机器人环境中,终端用户必须正确地理解其机器人团队伙伴的视觉输入模式,以便合作完成一项任务。为了提高行动理解度,用户要求更多解释机器人在特定情况下做出的决定。最近,可解释的机器人系统作为一种替代系统出现,不仅侧重于令人满意地完成一项任务,而且侧重于以类似人类的方式说明导致作出决定的原因。在强化学习情景中,一项巨大的努力侧重于使用数据驱动的方法提供解释,特别是从深层次学习系统中的视觉输入模式提供解释。在这项工作中,我们侧重于在机器人情景中执行任务的强化学习代理的决策过程。实验结果使用三种不同的设置,即确定性导航任务,随机导航任务,以及持续的视觉排序任务。作为解释目标驱动机器人行动的一种平均值,我们通过三种不同的拟议方法来比较成功的可能性:以记忆为基础、基于学习基础的基线观测,以及作为高概率分析基础的缩略图,我们从这些基础学习中学习到存储的缩略图数量。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Top
微信扫码咨询专知VIP会员