Deep Reinforcement Learning (DRL) is a viable solution for automating repetitive surgical subtasks due to its ability to learn complex behaviours in a dynamic environment. This task automation could lead to reduced surgeon's cognitive workload, increased precision in critical aspects of the surgery, and fewer patient-related complications. However, current DRL methods do not guarantee any safety criteria as they maximise cumulative rewards without considering the risks associated with the actions performed. Due to this limitation, the application of DRL in the safety-critical paradigm of robot-assisted Minimally Invasive Surgery (MIS) has been constrained. In this work, we introduce a Safe-DRL framework that incorporates safety constraints for the automation of surgical subtasks via DRL training. We validate our approach in a virtual scene that replicates a tissue retraction task commonly occurring in multiple phases of an MIS. Furthermore, to evaluate the safe behaviour of the robotic arms, we formulate a formal verification tool for DRL methods that provides the probability of unsafe configurations. Our results indicate that a formal analysis guarantees safety with high confidence such that the robotic instruments operate within the safe workspace and avoid hazardous interaction with other anatomical structures.
翻译:深入强化学习(DRL)是使重复性外科子任务自动化的一个可行解决方案,因为它有能力在动态环境中学习复杂的行为。任务自动化可以减少外科医生的认知工作量,提高外科手术关键方面的精确度,减少与病人有关的并发症。然而,目前的DRL方法并不能保证任何安全标准,因为如果不考虑所采取行动的风险,就会获得最大的累积回报。由于这一局限性,在机器人辅助小型侵入性外科手术(MIS)的安全关键范式中应用DRL受到制约。在这项工作中,我们引入了一个安全DRL框架,通过DRL培训将外科子任务自动化的安全限制纳入其中。我们验证了我们在虚拟环境中的做法,在虚拟环境中复制了通常发生在多阶段IMIS中的组织回收任务。此外,为了评估机器人武器的安全行为,我们为DRL方法制定了一个正式的核查工具,提供不安全配置的可能性。我们的结果表明,正式分析保证了安全性,因为机器人仪器在安全工作空间内操作,避免与其他原子结构发生危险互动。