We explore the data-parallel acceleration of physics-informed machine learning (PIML) schemes, with a focus on physics-informed neural networks (PINNs) for multiple graphics processing units (GPUs) architectures. In order to develop scale-robust PIML models for sophisticated applications (e.g., involving complex and high-dimensional domains, non-linear operators or multi-physics), which may require a large number of training points, we detail a protocol based on the Horovod training framework. This protocol is backed by $h$-analysis, including a new convergence bound for the generalization error. We show that the acceleration is straightforward to implement, does not compromise training, and proves to be highly efficient, paving the way towards generic scale-robust PIML. Extensive numerical experiments with increasing complexity illustrate its robustness and consistency, offering a wide range of possibilities for real-world simulations.
翻译:我们探索物理学知情机器学习(PIML)计划的数据平行加速计划,重点是物理学知情神经网络(PINNs),用于多个图形处理器(GPUs)的建筑。为了开发复杂应用(例如,涉及复杂和高维领域、非线性操作员或多物理)的大规模机器人模拟模型(例如,涉及复杂和高维领域、非线性操作员或多物理),可能需要大量培训点,我们详细介绍了基于Horovod培训框架的一项协议。这项协议得到美元分析的支持,包括用于一般化错误的新的趋同。我们表明,加速是直接可以实施的,而不是妨碍培训的,并且证明是高效的,为通用的紫外线性PIML铺平了道路。 日益复杂的大量数字实验显示了其稳健性和一致性,为现实世界模拟提供了广泛的可能性。