Most of the literature on spanners focuses on building the graph from scratch. This paper instead focuses on adding edges to improve an existing graph. A major open problem in this field is: given a graph embedded in a metric space, and a budget of $k$ edges, which $k$ edges do we add to produce a minimum-dilation graph? The special case where $k=1$ has been studied in the past, but no major breakthroughs have been made for $k > 1$. We provide the first positive result, an $O(k)$-approximation algorithm that runs in $O(n^3 \log n)$ time.
翻译:有关打手的大部分文献都侧重于从零开始构建图表。 本文则侧重于增加边, 以改善已有的图表。 这个领域一个主要的未决问题是: 给出一个嵌入度空间的图表, 预算为 $k$ 边缘, 我们加了一个 $k$ 边缘来生成最小差异图? 过去研究过 $k= 1 美元的特例, 但对于$k > 1 美元没有取得重大突破。 我们提供了第一个正结果, 即 $O( k) $- approxim 算法, 以 $( n) 3\ log n) 的时间运行 。