The graph exploration problem asks a searcher to explore an unknown graph. This problem can be interpreted as the online version of the Traveling Salesman Problem. The treasure hunt problem is the corresponding online version of the shortest s-t-path problem. It asks the searcher to find a specific vertex in an unknown graph at which a treasure is hidden. Recently, the analysis of the impact of a priori knowledge is of interest. In graph problems, one form of a priori knowledge is a map of the graph. We survey the graph exploration and treasure hunt problem with an unlabeled map, which is an isomorphic copy of the graph, that is provided to the searcher. We formulate decision variants of both problems by interpreting the online problems as a game between the online algorithm (the searcher) and the adversary. The map, however, is not controllable by the adversary. The question is, whether the searcher is able to explore the graph fully or find the treasure for all possible decisions of the adversary. We prove the PSPACE-completeness of these games, whereby we analyze the variations which ask for the mere existence of a tour through the graph or path to the treasure and the variations that include costs. Additionally, we analyze the complexity of related problems that ask for a tour in the graph or a s-t path.


翻译:图形勘探问题要求搜索者探索未知的图表。 这个问题可以被解释为“ 旅行销售商问题” 的在线版本。 寻宝问题就是最短的 S- t路径问题的相应在线版本。 它要求搜索者在隐藏藏宝的未知图表中找到特定的顶点。 最近, 分析先验知识的影响是令人感兴趣的。 在图形中, 一种先验知识的形式是图图的地图。 我们用一张未标的地图来调查图的勘探和寻宝问题。 我们用一张未标的地图来调查图探索和寻宝问题, 这张地图是提供给搜索者的图表的无形态副本。 我们通过将在线问题解释为在线算法( 搜索者) 和对手之间的游戏来制定两个问题的决定变量。 但是, 地图无法被对手控制。 问题是, 搜索者能否充分探索图表, 或为对手的所有可能决定找到宝藏。 我们证明了这些游戏的完美性, 从而我们分析了这些游戏的变异性, 也就是我们仅仅要求通过图表路径或图解的变式, 包括我们想要的路径的变式。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月8日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员