The uniform sampling of simple graphs matching a prescribed degree sequence is an important tool in network science, e.g. to construct graph generators or null-models. Here, the Edge Switching Markov Chain (ES-MC) is a common choice. Given an arbitrary simple graph with the required degree sequence, ES-MC carries out a large number of small changes, called edge switches, to eventually obtain a uniform sample. In practice, reasonably short runs efficiently yield approximate uniform samples. In this work, we study the problem of executing edge switches in parallel. We discuss parallelizations of ES-MC, but find that this approach suffers from complex dependencies between edge switches. For this reason, we propose the Global Edge Switching Markov Chain (G-ES-MC), an ES-MC variant with simpler dependencies. We show that G-ES-MC converges to the uniform distribution and design shared-memory parallel algorithms for ES-MC and G-ES-MC. In an empirical evaluation, we provide evidence that G-ES-MC requires not more switches than ES-MC (and often fewer), and demonstrate the efficiency and scalability of our parallel G-ES-MC implementation.
翻译:对符合规定度序列的简单图表进行统一抽样,这是网络科学中的一个重要工具,例如,用来制造图形生成器或无型模型。这里,边缘开关马科夫链(ES-MC)是一个常见的选择。考虑到一个任意的简单图,带有要求度序列,ES-MC进行大量小改动,称为边缘开关,最终获得统一的样本。在实践中,合理的短跑有效产生大致一致的样本。在这项工作中,我们同时研究执行边缘开关的问题。我们讨论了ES-MC的平行问题,但发现这种方法存在边缘开关之间的复杂依赖性。为此,我们建议采用全球边缘开关马科夫链(G-ES-MC),这是一种具有更简单依赖性的ES-MC变式。我们表明,G-ES-MC与统一的分布和设计共同的模范平行算法是相一致的。在一项经验性评估中,我们提供了证据,证明G-ES-MC不需要比ES-MC(而且往往更少)更多的开关,并显示我们平行的G-MC的效率和可操作性。