We present an undirected version of the recently introduced flow-augmentation technique: Given an undirected multigraph $G$ with distinguished vertices $s,t \in V(G)$ and an integer $k$, one can in randomized $k^{O(1)} \cdot (|V(G)| + |E(G)|)$ time sample a set $A \subseteq \binom{V(G)}{2}$ such that the following holds: for every inclusion-wise minimal $st$-cut $Z$ in $G$ of cardinality at most $k$, $Z$ becomes a minimum-cardinality cut between $s$ and $t$ in $G+A$ (i.e., in the multigraph $G$ with all edges of $A$ added) with probability $2^{-O(k \log k)}$. Compared to the version for directed graphs [STOC 2022], the version presented here has improved success probability ($2^{-O(k \log k)}$ instead of $2^{-O(k^4 \log k)}$), linear dependency on the graph size in the running time bound, and an arguably simpler proof. An immediate corollary is that the Bi-objective $st$-Cut problem can be solved in randomized FPT time $2^{O(k \log k)} (|V(G)|+|E(G)|)$ on undirected graphs.


翻译:我们展示了最近引入的流程提价技术的无方向版本 : 鉴于一个没有方向的多方G$($,t\in V(G)$)和整金美元, 美元可以随机化为$k ⁇ O(1)}\cdot( ⁇ V(G) ⁇ + ⁇ E(G) ⁇ )$(美元)来抽样一个设定的$A\subseteq\binom{V(G) ⁇ 2}美元,这样可以持有以下数据:对于每个包含的多方美元($,以最主要美元计为$,以美元计为美元)和整金(美元),Z$可以变成一个最小的心价削减(美元和美元,即多面美元,加上所有边端点为$A美元),概率为$-O(k)-PT(k){(k)}。与直方向图表[STOC 20222]的版本相比,此处展示的版本提高了成功概率($-O-$美元,以美元为美元) 直径(G__xxxxximal_ximal_xal_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
0+阅读 · 2023年4月2日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员