Many practitioners in robotics regularly depend on classic, hand-designed algorithms. Often the performance of these algorithms is tuned across a dataset of annotated examples which represent typical deployment conditions. Automatic tuning of these settings is traditionally known as algorithm configuration. In this work, we extend algorithm configuration to automatically discover multiple modes in the tuning dataset. Unlike prior work, these configuration modes represent multiple dataset instances and are detected automatically during the course of optimization. We propose three methods for mode discovery: a post hoc method, a multi-stage method, and an online algorithm using a multi-armed bandit. Our results characterize these methods on synthetic test functions and in multiple robotics application domains: stereoscopic depth estimation, differentiable rendering, motion planning, and visual odometry. We show the clear benefits of detecting multiple modes in algorithm configuration space.
翻译:许多机器人从业人员经常依赖传统的手工设计算法。 这些算法的性能往往通过代表典型部署条件的一组附加说明的例子来调整。 这些设置的自动调整传统上被称为算法配置。 在这项工作中,我们将算法配置扩展至自动发现调制数据集中的多种模式。 与先前的工作不同, 这些配置模式代表了多个数据集实例, 并在优化过程中被自动检测出来。 我们提出了三种模式发现方法: 后特别方法, 多阶段方法, 以及使用多臂土匪的在线算法。 我们在合成测试功能和多个机器人应用域中将这些方法定性为: 立体深度估计, 可差异的假设, 动作规划, 和视觉的观察方法。 我们展示了在算法配置空间中探测多种模式的明显好处 。</s>