Autism Spectrum Disorder (ASD) is a neurodevelopmental condition associated with difficulties with social interactions, communication, and restricted or repetitive behaviors. To characterize ASD, investigators often use functional connectivity derived from resting-state functional magnetic resonance imaging of the brain. However, participants' head motion during the scanning session can induce motion artifacts. Many studies remove scans with excessive motion, which can lead to drastic reductions in sample size and introduce selection bias. To avoid such exclusions, we propose an estimand inspired by causal inference methods that quantifies the difference in average functional connectivity in autistic and non-ASD children while standardizing motion relative to the low motion distribution in scans that pass motion quality control. We introduce a nonparametric estimator for motion control, called MoCo, that uses all participants and flexibly models the impacts of motion and other relevant features using an ensemble of machine learning methods. We establish large-sample efficiency and multiple robustness of our proposed estimator. The framework is applied to estimate the difference in functional connectivity between 132 autistic and 245 non-ASD children, of which 34 and 126 pass motion quality control. MoCo appears to dramatically reduce motion artifacts relative to no participant removal, while more efficiently utilizing participant data and accounting for possible selection biases relative to the na\"ive approach with participant removal.
翻译:暂无翻译