The deep reinforcement learning-based energy management strategies (EMS) have become a promising solution for hybrid electric vehicles (HEVs). When driving cycles are changed, the neural network will be retrained, which is a time-consuming and laborious task. A more efficient way of choosing EMS is to combine deep reinforcement learning (DRL) with transfer learning, which can transfer knowledge of one domain to the other new domain, making the network of the new domain reach convergence values quickly. Different exploration methods of DRL, including adding action space noise and parameter space noise, are compared against each other in the transfer learning process in this work. Results indicate that the network added parameter space noise is more stable and faster convergent than the others. In conclusion, the best exploration method for transferable EMS is to add noise in the parameter space, while the combination of action space noise and parameter space noise generally performs poorly. Our code is available at https://github.com/BIT-XJY/RL-based-Transferable-EMS.git.
翻译:深度强化基于学习的能源管理战略(EMS)已成为混合电动车辆(HEVs)的一个很有希望的解决办法。在改变驾驶周期时,神经网络将受到再培训,这是一项耗时费力的任务。选择EMS的一个更有效的方法是将深度强化学习(DRL)与转移学习结合起来,这样可以将一个领域的知识转移到另一个新的领域,使新领域的网络迅速达到趋同值。DRL的不同探索方法,包括增加行动空间噪音和参数空间噪音,在这项工作的转移学习过程中相互比较。结果显示,网络添加参数空间噪音比其他系统更加稳定、更快。最后,可转移的EMS的最佳探索方法是在参数空间增加噪音,而行动空间噪音和参数空间噪音的结合一般效果很差。我们的代码可在https://github.com/BIT-XJY/RL-basm-Transferable-EMS.git查阅。