We propose a new modeling framework for highly multivariate spatial processes that synthesizes ideas from recent multiscale and spectral approaches with graphical models. The basis graphical lasso writes a univariate Gaussian process as a linear combination of basis functions weighted with entries of a Gaussian graphical vector whose graph is estimated from optimizing an $\ell_1$ penalized likelihood. This paper extends the setting to a multivariate Gaussian process where the basis functions are weighted with Gaussian graphical vectors. We motivate a model where the basis functions represent different levels of resolution and the graphical vectors for each level are assumed to be independent. Using an orthogonal basis grants linear complexity and memory usage in the number of spatial locations, the number of basis functions, and the number of realizations. An additional fusion penalty encourages a parsimonious conditional independence structure in the multilevel graphical model. We illustrate our method on a large climate ensemble from the National Center for Atmospheric Research's Community Atmosphere Model that involves 40 spatial processes.
翻译:我们为高度多变空间过程提出了一个新的模型框架,将最近多尺度和光谱方法中的想法与图形模型综合起来。基础图形 lasso 写了一个单象形高斯进程,作为基函数的线性组合,并加上一个高斯图形矢量的条目,其图形通过优化一个受处罚的可能性而估算。本文将设置扩大到一个多变量高斯进程,其基函数与高斯图形矢量加权。我们鼓励一个模型,基础函数代表不同分辨率水平,而每个级别图形矢量假定是独立的。使用一个正方位基础,在空间位置数量、基函数数量以及实现数量方面给予线性复杂性和记忆使用。额外的聚变处罚鼓励在多层次图形模型中建立一个有孔的有条件的有条件独立结构。我们从国家大气研究中心的社区大气模型中,用一个涉及40个空间过程的大型气候元模型来说明我们的方法。