We propose a new modeling framework for highly multivariate spatial processes that synthesizes ideas from recent multiscale and spectral approaches with graphical models. The basis graphical lasso writes a univariate Gaussian process as a linear combination of basis functions weighted with entries of a Gaussian graphical vector whose graph is estimated from optimizing an $\ell_1$ penalized likelihood. This paper extends the setting to a multivariate Gaussian process where the basis functions are weighted with Gaussian graphical vectors. We motivate a model where the basis functions represent different levels of resolution and the graphical vectors for each level are assumed to be independent. Using an orthogonal basis grants linear complexity and memory usage in the number of spatial locations, the number of basis functions, and the number of realizations. An additional fusion penalty encourages a parsimonious conditional independence structure in the multilevel graphical model. We illustrate our method on a large climate ensemble from the National Center for Atmospheric Research's Community Atmosphere Model that involves 40 spatial processes.


翻译:我们为高度多变空间过程提出了一个新的模型框架,将最近多尺度和光谱方法中的想法与图形模型综合起来。基础图形 lasso 写了一个单象形高斯进程,作为基函数的线性组合,并加上一个高斯图形矢量的条目,其图形通过优化一个受处罚的可能性而估算。本文将设置扩大到一个多变量高斯进程,其基函数与高斯图形矢量加权。我们鼓励一个模型,基础函数代表不同分辨率水平,而每个级别图形矢量假定是独立的。使用一个正方位基础,在空间位置数量、基函数数量以及实现数量方面给予线性复杂性和记忆使用。额外的聚变处罚鼓励在多层次图形模型中建立一个有孔的有条件的有条件独立结构。我们从国家大气研究中心的社区大气模型中,用一个涉及40个空间过程的大型气候元模型来说明我们的方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月3日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员