This paper presents a machine learning framework (GP-NODE) for Bayesian systems identification from partial, noisy and irregular observations of nonlinear dynamical systems. The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers and perform Bayesian inference with respect to unknown model parameters using Hamiltonian Monte Carlo sampling and Gaussian Process priors over the observed system states. This allows us to exploit temporal correlations in the observed data, and efficiently infer posterior distributions over plausible models with quantified uncertainty. Moreover, the use of sparsity-promoting priors such as the Finnish Horseshoe for free model parameters enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics. A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology, and a 50-dimensional human motion dynamical system. Taken together, our findings put forth a novel, flexible and robust workflow for data-driven model discovery under uncertainty. All code and data accompanying this manuscript are available online at \url{https://github.com/PredictiveIntelligenceLab/GP-NODEs}.
翻译:本文介绍了一种机器学习框架(GP-NODE),用于巴伊西亚系统从非线性动态系统的局部、吵闹和不规则观测中识别非线性动态系统。拟议方法利用不同编程中的最新发展,通过普通的差分方程求解器传播梯度信息,并用汉密尔顿·蒙特卡洛取样和高森进程之前的观察系统状态对未知的模型参数进行巴伊西亚人的推论。这使我们能够利用观测到的数据中的时间相关性,并有效地推断出有可量化不确定性的貌似模型的后继体分布。此外,使用芬兰马休自由模型参数等渗透性促进性前期,使得能够发现潜在动态基础的可解释性和可辨别性。一系列数字研究展示了拟议的GP-NODE方法的有效性,包括掠食系统、系统生物学和50维人类运动动态系统。我们的调查结果合在一起,为不确定性下的数据驱动模型的发现提出了一个新颖、灵活和有力的工作流程。所有与这一手稿相关的代码和数据都在以下的GPRA-URIM{IFF.