We estimate a general mixture of Markov jump processes. The key novel feature of the proposed mixture is that the transition intensity matrices of the Markov processes comprising the mixture are entirely unconstrained. The Markov processes are mixed with distributions that depend on the initial state of the mixture process. The new mixture is estimated from its continuously observed realizations using the EM algorithm, which provides the maximum likelihood (ML) estimates of the mixture's parameters. To obtain the standard errors of the estimates of the mixture's parameters, we employ Louis' (1982) general formula for the observed Fisher information matrix. We also derive the asymptotic properties of the ML estimators. Simulation study verifies the estimates' accuracy and confirms the consistency and asymptotic normality of the estimators. The developed methods are applied to a medical dataset, for which the likelihood ratio test rejects the constrained mixture in favor of the proposed unconstrained one. This application exemplifies the usefulness of a new unconstrained mixture for identification and characterization of homogeneous subpopulations in a heterogeneous population.
翻译:我们估计了马可夫跳跃过程的一般混合物。 拟议混合物的关键新特征是组成混合物的马可夫过程的过渡强度矩阵完全不受限制。 马尔科夫过程与取决于混合物过程初始状态的分布混合在一起。 新的混合物是从利用EM算法持续观察到的实现中估算的, 后者提供了该混合物参数的最大可能性估计值( ML) 。 为了获得该混合物参数估计值的标准错误, 我们为观察到的渔业信息矩阵使用Louis' (1982) 的一般公式。 我们还得出ML估计器的无症状特性。 模拟研究核查了估算的准确性, 并证实了估计器的一致性和无症状的正常性。 开发的方法被用于医疗数据集, 其可能比率测试拒绝受限制的混合物, 以有利于拟议不受限制的混合物。 这一应用说明了一种新的未受限制的混合物在混杂人口群中识别和定性的同质子群群中的效用。