One of the main challenges of Topological Data Analysis (TDA) is to extract features from persistent diagrams directly usable by machine learning algorithms. Indeed, persistence diagrams are intrinsically (multi-)sets of points in $\mathbb{R}^2$ and cannot be seen in a straightforward manner as vectors. In this article, we introduce $\texttt{Persformer}$, the first Transformer neural network architecture that accepts persistence diagrams as input. The $\texttt{Persformer}$ architecture significantly outperforms previous topological neural network architectures on classical synthetic and graph benchmark datasets. Moreover, it satisfies a universal approximation theorem. This allows us to introduce the first interpretability method for topological machine learning, which we explore in two examples.
翻译:地形数据分析(TDA)的主要挑战之一是从机器学习算法直接使用的持久性图表中提取特征。 事实上, 持久性图表本质上( 多)是 $\ mathbb{R ⁇ 2$ 的点集, 无法以直截了当的方式将之视为矢量。 在本篇文章中, 我们引入了 $\ textt{Persfer}$, 这是第一个接受持久性图表作为输入的变异神经网络结构。 $\ textt{Persfrent} $ 的架构大大超过了古典合成和图形基准数据集的先前的顶层神经网络结构。 此外, 它满足了一种通用近似值的理论。 这使我们能够引入第一个可解释的地形机器学习方法, 我们用两个例子来探讨。