In this paper, we study mid-cap companies, i.e. publicly traded companies with less than US $10 billion in market capitalisation. Using a large dataset of US mid-cap companies observed over 30 years, we look to predict the default probability term structure over the medium term and understand which data sources (i.e. fundamental, market or pricing data) contribute most to the default risk. Whereas existing methods typically require that data from different time periods are first aggregated and turned into cross-sectional features, we frame the problem as a multi-label time-series classification problem. We adapt transformer models, a state-of-the-art deep learning model emanating from the natural language processing domain, to the credit risk modelling setting. We also interpret the predictions of these models using attention heat maps. To optimise the model further, we present a custom loss function for multi-label classification and a novel multi-channel architecture with differential training that gives the model the ability to use all input data efficiently. Our results show the proposed deep learning architecture's superior performance, resulting in a 13% improvement in AUC (Area Under the receiver operating characteristic Curve) over traditional models. We also demonstrate how to produce an importance ranking for the different data sources and the temporal relationships using a Shapley approach specific to these models.
翻译:在本文中,我们研究中上层公司,即市场资本总额低于100亿美元的上市公司。我们利用30多年来观察到的美国中上层公司的大量数据集,预测中期内的默认概率期结构,并了解哪些数据源(即基本数据、市场数据或定价数据)对违约风险贡献最大。虽然现有方法通常要求不同时期的数据首先汇总,然后转换成跨部门特征,但我们将问题描述为一个多标签时间序列分类问题。我们把变压器模型、一种来自自然语言处理域的最先进的深层次学习模型,用于信用风险建模。我们还利用关注热图来解释这些模型的预测。为了进一步优化模型,我们提出了多标签分类的定制损失功能和一个具有不同培训的新型多通道结构,使模型能够有效使用所有投入数据。我们的结果显示,拟议的深层次学习结构表现优异,导致AUC(在接收器特性下)13 %的改进,从而产生一种传统模型的重要性。我们还展示了这些模型如何使用不同的历史级数据源。我们用不同的模型来制作不同的数据。