A* is a classic and popular method for graphs search and path finding. It assumes the existence of a heuristic function $h(u,t)$ that estimates the shortest distance from any input node $u$ to the destination $t$. Traditionally, heuristics have been handcrafted by domain experts. However, over the last few years, there has been a growing interest in learning heuristic functions. Such learned heuristics estimate the distance between given nodes based on "features" of those nodes. In this paper we formalize and initiate the study of such feature-based heuristics. In particular, we consider heuristics induced by norm embeddings and distance labeling schemes, and provide lower bounds for the tradeoffs between the number of dimensions or bits used to represent each graph node, and the running time of the A* algorithm. We also show that, under natural assumptions, our lower bounds are almost optimal.
翻译:A* 是一种典型和流行的图形搜索和路径发现方法。 它假定存在一种超自然函数$h(u)t($h,t),它估计从任何输入节点到目的地的最短距离。 传统上, 超自然是由域专家手工制作的。 然而,过去几年来,人们越来越有兴趣学习超自然功能。 这种学得来的超自然学根据这些节点的“特性”来估计给定节点之间的距离。 在本文中,我们正式确定并开始研究这种基于特征的超自然学。 特别是, 我们考虑由标准嵌入和距离标签计划引起的超自然理论, 并为用于代表每个图形节点的尺寸或位数与A* 算法运行时间之间的取舍取取更低的界限。 我们还表明,在自然假设下, 我们较低的界限几乎是最佳的。