In this paper, by calculating the dual code of the Schur square for the standard twisted Reed-Solomon code, we give a sufficient and necessary condition for the generalized twisted Reed-Solomon code with $h+t\le k-1$ to be self-orthogonal, where $k$ is dimension, $h$ is hook and $t$ is twist. And then, we show that there is no self-orthogonal generalized twisted Reed-Solomon code under some conditions. Furthermore, several classes of self-orthogonal generalized twisted Reed-Solomon codes are constructed, and some of these codes are non-GRS self-orthogonal MDS codes or NMDS codes.
翻译:在本文中,通过计算标准扭曲的Reed-Solomon代码的Schur广场的双重代码,我们给通用扭曲的Reed-Solomon代码以足够和必要的条件,使带有$h+t\le k-1$的普惠扭曲的Reed-Solomon代码具有自我骨质,在这种代码中,$k$是维度,$h$是钩值,$t美元是扭曲的。然后,我们表明,在某些条件下,不存在自我垂直普遍扭曲 Reed-Solomon代码。此外,还建立了几类自我垂直普遍扭曲的Reed-Solomon代码,其中一些代码是非GRS自体骨质MDS代码或NDDS代码。