One of the major concerns of targeting interventions on individuals in social welfare programs is discrimination: individualized treatments may induce disparities across sensitive attributes such as age, gender, or race. This paper addresses the question of the design of fair and efficient treatment allocation rules. We adopt the non-maleficence perspective of first do no harm: we select the fairest allocation within the Pareto frontier. We cast the optimization into a mixed-integer linear program formulation, which can be solved using off-the-shelf algorithms. We derive regret bounds on the unfairness of the estimated policy function and small sample guarantees on the Pareto frontier under general notions of fairness. Finally, we illustrate our method using an application from education economics.
翻译:在社会福利方案中针对个人进行干预的主要关切之一是歧视:个性化治疗可能导致年龄、性别或种族等敏感属性之间的差异。本文件论述设计公平和有效待遇分配规则的问题。我们首先采取非男性观点,不造成伤害:我们在帕雷托边境选择最公平的分配。我们把优化化纳入混合整数线性方案拟定,利用现成算法可以解决这个问题。我们对估计政策功能的不公平和基于一般公平概念在帕雷托边境的少量抽样保障感到遗憾。最后,我们用教育经济学的应用来说明我们的方法。