Line coverage is the task of servicing a given set of one-dimensional features in an environment. It is important for the inspection of linear infrastructure such as road networks, power lines, and oil and gas pipelines. This paper addresses the single robot line coverage problem for aerial and ground robots by modeling it as an optimization problem on a graph. The problem belongs to the broad class of arc routing problems and is closely related to the asymmetric rural postman problem (RPP). The paper presents an integer linear programming formulation with proof of correctness. Using the minimum cost flow problem, we develop approximation algorithms with guarantees on the solution quality. These guarantees also improve the existing results for the asymmetric RPP. The main algorithm partitions the problem into three cases based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We evaluate our algorithms on road networks from the 50 most populous cities in the world. The algorithms, augmented with improvement heuristics, run within 3s and generate solutions that are within 10% of the optimum. We experimentally demonstrate our algorithms with commercial UAVs on the UNC Charlotte campus road network.
翻译:线条覆盖是维护环境特定一组一维特征的任务。 对于检查公路网络、电线线线性基础设施, 以及石油和天然气管道等线性基础设施非常重要 。 本文通过将空中和地面机器人的单一机器人线性覆盖问题建模作为图表上的优化问题来解决 。 问题属于广类弧路由问题, 与非对称农村邮差问题密切相关 。 本文展示了具有正确性证据的整数线性编程配方 。 使用最低成本流量问题, 我们开发了具有解决方案质量保障的近似算法 。 这些还保证了不对称RPP的现有结果 。 主要算法根据所需的图形结构将问题分为三个案例, 即需要维修的特征所引出的图 。 我们评估了来自世界上50个人口最多的城市的公路网络的算法 。 算法通过改进超常技术, 在3个范围内运行, 并产生在10 %的最佳解决方案范围内的解决方案 。 我们用商用UAV系统在UNC 夏洛特公路网中实验了我们的算法 。