The use of machine learning models in consequential decision making often exacerbates societal inequity, in particular yielding disparate impact on members of marginalized groups defined by race and gender. The area under the ROC curve (AUC) is widely used to evaluate the performance of a scoring function in machine learning, but is studied in algorithmic fairness less than other performance metrics. Due to the pairwise nature of the AUC, defining an AUC-based group fairness metric is pairwise-dependent and may involve both \emph{intra-group} and \emph{inter-group} AUCs. Importantly, considering only one category of AUCs is not sufficient to mitigate unfairness in AUC optimization. In this paper, we propose a minimax learning and bias mitigation framework that incorporates both intra-group and inter-group AUCs while maintaining utility. Based on this Rawlsian framework, we design an efficient stochastic optimization algorithm and prove its convergence to the minimum group-level AUC. We conduct numerical experiments on both synthetic and real-world datasets to validate the effectiveness of the minimax framework and the proposed optimization algorithm.
翻译:使用机器学习模型进行相应决策往往会加剧社会不平等,特别是对种族和性别界定的边缘群体成员产生不同的影响。ROC曲线(AUC)下的领域被广泛用于评估机器学习中评分功能的绩效,但研究的算法公平性低于其他性能衡量标准。由于AUC的对称性质,界定AUC的集团公平性指标是双向依赖的,可能同时涉及\emph{intra- group}和\emph{inter- group}AUCs。重要的是,只考虑一类ACUCs不足以减轻AUC优化中的不公平性。在本文件中,我们提议了一个小型摩卡学习和减少偏差的框架,既包括集团内部的和集团之间的ACUCs,同时又保持实用性。我们根据罗尔森框架设计了一个高效的随机优化算法,并证明它与AUCs最低组级的趋同。我们在合成和真实世界数据集方面进行数字实验,以验证微模框架的有效性和拟议的优化算法。