In this paper, we investigate the online allocation problem of maximizing the overall revenue subject to both lower and upper bound constraints. Compared to the extensively studied online problems with only resource upper bounds, the two-sided constraints affect the prospects of resource consumption more severely. As a result, only limited violation of constraints or pessimistic competitive bounds could be guaranteed. To tackle the challenge, we define a measure of feasibility $\xi^*$ to evaluate the hardness of this problem, and estimate this measurement by an optimization routine with theoretical guarantees. We propose an online algorithm adopting a constructive framework, where we initialize a threshold price vector using the estimation, then dynamically update the price vector and use it for decision making at each step. It can be shown that the proposed algorithm is $\big(1-O(\frac{\varepsilon}{\xi^*-\varepsilon})\big)$ or $\big(1-O(\frac{\varepsilon}{\xi^*-\sqrt{\varepsilon}})\big)$ competitive with high probability for $\xi^*$ known or unknown respectively. To the best of our knowledge, this is the first result establishing a nearly optimal competitive algorithm for solving two-sided constrained online allocation problems with high probability of feasibility.


翻译:在本文中,我们调查了在受下限和上限限制的情况下最大限度地增加总收入的在线分配问题。 与经过广泛研究的仅有资源上限的在线问题相比, 双向限制对资源消费前景的影响更为严重。 因此, 只有有限的违反限制或悲观的竞争界限才能得到保证。 为了应对这一挑战, 我们定义了衡量可行性的尺度 $xi $, 以评估这一问题的难度, 并通过理论保证优化常规来估计这一计量。 我们提议采用一个建设性的计算法框架, 即我们使用估算开始启用一个阈值价格矢量, 然后动态更新价格矢量, 并在每一步骤上使用它来进行决策。 由此可以证明, 拟议的算法是 $( 1- O ) (\ frac)\ varepsilon_ \ \ \ varepsilon}\\ varepsilon} big, 或者 $( 1- O) i- O (frac) exprecial six) presslational commission a big) exfective extizeal comlistal real resmissal presmission the the the the the the the the firstal firstal firstal firstal firstal proal presolgal presolgal presmalmalmluttalmluttalmlational presmlational pres.

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员