In the mid 80s, Lichtenstein, Pnueli, and Zuck showed that every formula of Past LTL (the extension of Linear Temporal Logic with past operators) is equivalent to a conjunction of formulas of the form $\mathbf{G}\mathbf{F} \varphi \vee \mathbf{F}\mathbf{G} \psi$, where $\varphi$ and $\psi$ contain only past operators. Some years later, Chang, Manna, and Pnueli derived a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. In 2020, Sickert and Esparza presented a direct and purely syntactic normalization procedure for LTL yielding a normal form similar to the one by Chang, Manna, and Pnueli, with a single exponential blow-up, and applied it to the problem of constructing a succinct deterministic $\omega$-automaton for a given formula. However, their procedure had exponential time complexity in the best case. In particular, it does not perform better for formulas that are almost in normal form. In this paper we present an alternative normalization procedure based on a simple set of rewrite rules.
翻译:在80年代中期,Lichtenstein,Pnueli和Zuck证明了过去的LTL(具有过去运算符的线性时间逻辑的扩展)的每个公式都等价于形式为$\mathbf{G}\mathbf{F} \varphi \vee \mathbf{F}\mathbf{G} \psi$的公式的合取,其中$\varphi$和$\psi$仅包含过去运算符。几年后,Chang,Manna和Pnueli导出了类似的LTL正常形式。两个规范化过程都有非元素最坏情况的爆炸性增长,并且跟随从公式到无计数自动机到星形正则表达式,再返回到公式的复杂路径。在2020年,Sickert和Esparza提出了一种直接且纯句法的LTL规范化程序,产生类似于Chang,Manna和Pnueli的正常形式,具有单一指数级的爆炸性增长,并将其应用于构造给定公式的简洁确定性$\omega$自动机的问题。然而,他们的程序在最好的情况下具有指数时间复杂度。特别是,它不能更好地处理几乎在正常形式中的公式。在本文中,我们提出了一种基于简单的重写规则的替代规范化程序。