The infinite-domain CSP dichotomy conjecture extends the finite-domain CSP dichotomy theorem to reducts of finitely bounded homogeneous structures. Every such structure is uniquely described by a particular sentence of the logic SNP. We show that the question whether a given SNP sentence describes a structure within the scope of the conjecture is undecidable even if the sentence comes from the connected Datalog fragment, and that the closely related problem of testing the amalgamation property for universal sentences is EXPSPACE-hard. We also discuss some philosophical implications of these results for the infinite-domain CSP dichotomy conjecture.


翻译:CSP的无限多面截面截面截面截面截面截面截面结构的假设将CSP的定理延伸至有限界限同质结构的再解缩。 每个这种结构都由逻辑SNP的一个特定句子作了独特的描述。 我们表明,即使该句子来自相关的数据片段,特定 SNP 句子描述的假设范围内的结构是否不可确定,而且测试通用判决的合并属性的密切相关的问题是 EXP SPACE-hard。 我们还讨论了这些结果对无限多面的 CSP 分界图的哲学影响。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
66+阅读 · 2021年6月18日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关主题
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
30+阅读 · 2021年7月7日
Arxiv
66+阅读 · 2021年6月18日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员