The infinite-domain CSP dichotomy conjecture extends the finite-domain CSP dichotomy theorem to reducts of finitely bounded homogeneous structures. Every such structure is uniquely described by a particular sentence of the logic SNP. We show that the question whether a given SNP sentence describes a structure within the scope of the conjecture is undecidable even if the sentence comes from the connected Datalog fragment, and that the closely related problem of testing the amalgamation property for universal sentences is EXPSPACE-hard. We also discuss some philosophical implications of these results for the infinite-domain CSP dichotomy conjecture.
翻译:CSP的无限多面截面截面截面截面截面截面截面结构的假设将CSP的定理延伸至有限界限同质结构的再解缩。 每个这种结构都由逻辑SNP的一个特定句子作了独特的描述。 我们表明,即使该句子来自相关的数据片段,特定 SNP 句子描述的假设范围内的结构是否不可确定,而且测试通用判决的合并属性的密切相关的问题是 EXP SPACE-hard。 我们还讨论了这些结果对无限多面的 CSP 分界图的哲学影响。