We present a perception constrained visual predictive control (PCVPC) algorithm for quadrotors to enable aggressive flights without using any position information. Our framework leverages nonlinear model predictive control (NMPC) to formulate a constrained image-based visual servoing (IBVS) problem. The quadrotor dynamics, image dynamics, actuation constraints, and visibility constraints are taken into account to handle quadrotor maneuvers with high agility. Two main challenges of applying IBVS to agile drones are considered: (i) high sensitivity of depths to intense orientation changes, and (ii) conflict between the visual servoing objective and action objective due to the underactuated nature. To deal with the first challenge, we parameterize a visual feature by a bearing vector and a distance, by which the depth will no longer be involved in the image dynamics. Meanwhile, we settle the conflict problem by compensating for the rotation in the future visual servoing cost using the predicted orientations of the quadrotor. Our approach in simulation shows that (i) it can work without any position information, (ii) it can achieve a maximum referebce speed of 9 m/s in trajectory tracking without losing the target, and (iii) it can reach a landmark, e.g., a gate in drone racing, from varied initial configurations.


翻译:我们展示了一种感知有限视觉预测控制(PCVPC)算法,用于对四重体进行振动性飞行,而不使用任何位置信息。我们的框架利用非线性模型预测控制(NMPC)来开发一个基于图像的有限视觉预视(IBVS)问题。四重体动态、图像动态、振动限制和可见度限制被考虑在内,以便以高度敏捷的方式处理四重体操纵。将IBVS应用于敏捷的无人驾驶飞机的两种主要挑战被考虑在内:(一) 深度对强烈定向变化的高度敏感度,以及(二) 视觉预知目标与行动目标之间的冲突(NMPC) 。为了应对第一个挑战,我们用一个带动矢量的矢量和距离来测定一个视觉特征特征特征,从而不再将深度纳入图像动态中。与此同时,我们通过利用孔地体的预测方向来补偿未来视觉振动性无人机的旋转成本,解决了冲突问题。我们在模拟中的方法表明:(一) 它可以在没有定位信息的情况下工作,在视觉振动性目标上运行中工作,(二) 能够找到一个最大速度。(三) 它在初始轨道上达到一个方向,可以参照轨道上达到一个最大速度,可以参照速度,可以找到一个最大。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年3月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2021年11月15日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年3月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员