Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem, which can help greatly reduce the number of the required traffic monitoring sensors for cost savings. In this work, we notice that traffic flow has a high correlation with road network, which was either completely ignored or simply treated as an external factor in previous works.To facilitate this problem, we propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that explicitly exploits the prior knowledge of road networks to fully learn the road-aware spatial distribution of fine-grained traffic flow. Specifically, a multi-directional 1D convolutional layer is first introduced to extract the semantic feature of the road network. Subsequently, we incorporate the road network feature and coarse-grained flow feature to regularize the short-range spatial distribution modeling of road-relative traffic flow. Furthermore, we take the road network feature as a query to capture the long-range spatial distribution of traffic flow with a transformer architecture. Benefiting from the road-aware inference mechanism, our method can generate high-quality fine-grained traffic flow maps. Extensive experiments on three real-world datasets show that the proposed RATFM outperforms state-of-the-art models under various scenarios. Our code and datasets are released at {\url{https://github.com/luimoli/RATFM}}.


翻译:精确推断细粒度交通流量是一个新兴而至关重要的问题,可以大大减少所需的交通监测传感器数量从而节省成本。在这项工作中,我们注意到交通流量与道路网络之间存在着很高的相关性,但这在以前的工作中要么被彻底忽略了,要么只被简单地视为外部因素。为了解决这个问题,我们提出了一种新颖的道路感知交通流量放大器(RATFM),它明确利用了道路网络的先验知识,全面学习了基于道路的细粒度交通流空间分布。具体来说,我们首先引入了一个多方向的一维卷积层来提取道路网络的语义特征。随后,我们将道路网络特征和粗粒度的流量特征结合起来,规范化地建模道路相关交通流的短程空间分布。此外,我们以道路网络特征作为查询,利用变换器架构捕获交通流的长程空间分布。受道路感知推断机制的益处,我们的方法可以生成高质量的细粒度交通流图。在三个真实数据集上进行的大量实验表明,所提出的RATFM在各种场景下优于现有的模型。我们的代码和数据集已在{\url{https://github.com/luimoli/RATFM}}上发布。

0
下载
关闭预览

相关内容

【ICLR2022】Transformers亦能贝叶斯推断
专知会员服务
24+阅读 · 2021年12月23日
专知会员服务
56+阅读 · 2021年1月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
【ICLR2022】Transformers亦能贝叶斯推断
专知会员服务
24+阅读 · 2021年12月23日
专知会员服务
56+阅读 · 2021年1月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员