There has been an increasing interest in enhancing the fairness of machine learning (ML). Despite the growing number of fairness-improving methods, we lack a systematic understanding of the trade-offs among factors considered in the ML pipeline when fairness-improving methods are applied. This understanding is essential for developers to make informed decisions regarding the provision of fair ML services. Nonetheless, it is extremely difficult to analyze the trade-offs when there are multiple fairness parameters and other crucial metrics involved, coupled, and even in conflict with one another. This paper uses causality analysis as a principled method for analyzing trade-offs between fairness parameters and other crucial metrics in ML pipelines. To ractically and effectively conduct causality analysis, we propose a set of domain-specific optimizations to facilitate accurate causal discovery and a unified, novel interface for trade-off analysis based on well-established causal inference methods. We conduct a comprehensive empirical study using three real-world datasets on a collection of widelyused fairness-improving techniques. Our study obtains actionable suggestions for users and developers of fair ML. We further demonstrate the versatile usage of our approach in selecting the optimal fairness-improving method, paving the way for more ethical and socially responsible AI technologies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
66+阅读 · 2021年6月18日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
26+阅读 · 2019年11月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员