The opaqueness of the multi-hop fact verification model imposes imperative requirements for explainability. One feasible way is to extract rationales, a subset of inputs, where the performance of prediction drops dramatically when being removed. Though being explainable, most rationale extraction methods for multi-hop fact verification explore the semantic information within each piece of evidence individually, while ignoring the topological information interaction among different pieces of evidence. Intuitively, a faithful rationale bears complementary information being able to extract other rationales through the multi-hop reasoning process. To tackle such disadvantages, we cast explainable multi-hop fact verification as subgraph extraction, which can be solved based on graph convolutional network (GCN) with salience-aware graph learning. In specific, GCN is utilized to incorporate the topological interaction information among multiple pieces of evidence for learning evidence representation. Meanwhile, to alleviate the influence of noisy evidence, the salience-aware graph perturbation is induced into the message passing of GCN. Moreover, the multi-task model with three diagnostic properties of rationale is elaborately designed to improve the quality of an explanation without any explicit annotations. Experimental results on the FEVEROUS benchmark show significant gains over previous state-of-the-art methods for both rationale extraction and fact verification.


翻译:多点事实核查模型的不透明性要求解释性的要求。一个可行的方法是提取理由,即一组投入,其预测的性能在删除时会急剧下降。多点事实核查的大多数理由提取方法虽然可以解释,但多点事实核查的多数理由提取方法在每项证据中单独探索语义信息,同时忽视不同证据之间的地形信息互动。从直觉看,一个忠诚的理由含有补充信息,能够通过多点逻辑推理过程提取其他理由。为了解决这些缺点,我们将多点事实的多点核实作为子绘图提取,这可以在图表革命网络(GCN)和突出的图表学习的基础上得到解决。具体地说,GCN用来将多点证据中的地形互动信息纳入到不同的证据中去,同时,突出的觉察力图触动作用被引入了GCN的传递信息。此外,多点分析原理模型有三个诊断性,其设计的目的是在不作任何明确解释的情况下改进解释质量。实验性结果显示前一点事实的实验性推理学结果,同时显示FOURAL-GIS基准的实验性推理学结果。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员