Given a linear ordering of the vertices of a graph, the cutwidth of a vertex $v$ with respect to this ordering is the number of edges from any vertex before $v$ (including $v$) to any vertex after $v$ in this ordering. The cutwidth of an ordering is the maximum cutwidth of any vertex with respect to this ordering. We are interested in finding the cutwidth of a graph, that is, the minimum cutwidth over all orderings, which is an NP-hard problem. In order to approximate the cutwidth of a given graph, we present a semidefinite relaxation. We identify several classes of valid inequalities and equalities that we use to strengthen the semidefinite relaxation. These classes are on the one hand the well-known 3-dicycle equations and the triangle inequalities and on the other hand we obtain inequalities from the squared linear ordering polytope and via lifting the linear ordering polytope. The solution of the semidefinite program serves to obtain a lower bound and also to construct a feasible solution and thereby having an upper bound on the cutwidth. In order to evaluate the quality of our bounds, we perform numerical experiments on graphs of different sizes and densities. It turns out that we produce high quality bounds for graphs of medium size independent of their density in reasonable time. Compared to that, obtaining bounds for dense instances of the same quality is out of reach for solvers using integer linear programming techniques.


翻译:根据一个图表的顶端线性排序,顶端美元相对于此顺序的剪切值是,在美元(包括美元)之前的任何顶端的边缘数,在美元(包括美元)之前的任何顶端数,在美元(包括美元)之后的任何顶端数,在美元(包括美元)之后的任何顶端数,在此顺序中的任何顶端值的剪切值是任何顶端的最大剪切值。根据此顺序,我们有兴趣找到一个图形的剪裁值,即所有订单的最小剪切度,这是一个NP-硬问题。为了接近某个特定图表的剪切度,我们展示了半限定值的宽度。我们找出了几个有效的不平等和等值类别,用来加强半确定半限定值的放松。这些类别一方面是已知的3-双周期方方程和三角间不平等,另一方面,我们从平面线性命令的直径直线性调的直径直线性直线性调的直径直径直径直线性。我们半端方案的解决方案是为了获得一个更窄的直径直径直径直的直直度度,我们用直的直径直径直方的直径直度的直度的直度的直度验证度验证度的直度,然后用直度的直度的直度的直度的直度的直度的直度的直径直径直线径直度的直度的直度度度度度,然后用直径直线性的直度的直度的直度的直线度的直线度,然后用直线度的直线度度度的直线度的直线性度的直线度,然后用直线度的直度的直度的直度的直线度,然后用直度的直度的直度的直线度的直度的直度的直度,然后的直度的直的直度的直度的直度的直度度度度度度度度度度度度度度度的直线度的直线度, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月2日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员