This paper presents an approach for estimating Shapley effects for use as global sensitivity metrics to quantify the relative importance of uncertain model parameters. Polynomial Chaos expansion, a well established approach for developing surrogate models is proposed to be used to estimate Shapley effects. Polynomial Chaos permits the transformation of a stochastic process to a deterministic model which can then be used to efficiently evaluate statistical moments of the quantity of interest. These moments include conditional variances which are algebraically mapped to Shapley effects. The polynomial chaos based estimates of Shapley effects are validated using Monte Carlo simulations and tested on the benchmark Ishigami function and on the dynamic SEIR epidemic model and the Bergman Type 1 diabetes model. The results illustrate the correct ranking of uncertain variables for the Ishigami function in contrast to the Sobol indices and illustrates the time-varying rank ordering of the model parameters for the dynamic models.
翻译:本文件提出一种方法,用于估计沙pely效应,作为全球敏感度指标,以量化不确定模型参数的相对重要性。提议使用多元混乱扩大这一成熟的开发代用模型的方法来估计沙pely效应。多元混乱允许将一个随机过程转换为确定性模型,然后用于有效评估利息数量的统计时段。这些时段包括有条件的差异,这些变化是用对沙pely效应的代谢式绘图绘制的。基于沙pely效应的多位混乱估计数通过蒙特卡洛模拟加以验证,并根据基准石神功能、动态SEIR流行病模型和伯格曼1型糖尿病模型进行测试。结果说明了Ishigami函数的不确定变量与Sobol指数相比的正确排序,并说明了动态模型模型参数的排列时间顺序。