In this paper, we propose a linear and monolithic finite element method for the approximation of an incompressible viscous fluid interacting with an elastic and deforming plate. We use the arbitrary Lagrangian-Eulerian (ALE) approach that works in the reference domain, meaning that no re-meshing is needed during the numerical simulation. For time discretization, we employ the backward Euler method. For space discretization, we respectively use P1-bubble, P1, and P1 finite elements for the approximation of the fluid velocity, pressure, and structure displacement. We show that our method fulfills the geometrical conservation law and dissipates the total energy on the discrete level. Moreover, we prove the (optimal) linear convergence with respect to the sizes of the time step $\tau$ and the mesh $h$. We present numerical experiments involving a substantially deforming fluid domain that do validate our theoretical results. A comparison with a fully implicit (thus nonlinear) scheme indicates that our semi-implicit linear scheme is faster and as accurate as the fully implicit one, at least in stable configurations.
翻译:在本文中,我们提出了一个直线和单项限制元素方法,用于接近与弹性和变形板相交的不压缩粘结性粘结液流体。我们使用了在参考领域工作的任意Lagrangian-ELERIAN(ALE)方法,这意味着在数字模拟期间不需要再涂层。对于时间分解,我们采用后向的 Euler 方法。对于空间分解,我们分别使用P1-bubbble、P1和P1的限定元素,以接近流体速度、压力和结构流体流体流体流体流体流体流体流体流体流体流体流体。我们表明,我们的方法符合了几何保护法,并消散了离层的总能量。此外,我们证明,在时间步骤的大小方面,我们需要(最佳的)线性趋近(最佳)线性趋近于美元和Mesh $(美元)的大小。我们提出的数字实验涉及一个大幅度分解的流体域,可以验证我们的理论结果。与一个完全隐含的(因此非线性)方案相比较表明,我们的半隐性线性线性线性计划是快速和准确的,至少是完全隐含的。