Remote sensing images are known of having complex backgrounds, high intra-class variance and large variation of scales, which bring challenge to semantic segmentation. We present LoG-CAN, a multi-scale semantic segmentation network with a global class-aware (GCA) module and local class-aware (LCA) modules to remote sensing images. Specifically, the GCA module captures the global representations of class-wise context modeling to circumvent background interference; the LCA modules generate local class representations as intermediate aware elements, indirectly associating pixels with global class representations to reduce variance within a class; and a multi-scale architecture with GCA and LCA modules yields effective segmentation of objects at different scales via cascaded refinement and fusion of features. Through the evaluation on the ISPRS Vaihingen dataset and the ISPRS Potsdam dataset, experimental results indicate that LoG-CAN outperforms the state-of-the-art methods for general semantic segmentation, while significantly reducing network parameters and computation. Code is available at~\href{https://github.com/xwmaxwma/rssegmentation}{https://github.com/xwmaxwma/rssegmentation}.
翻译:遥感图像以具有复杂背景、阶级内部差异大和比例差异大而闻名,给语义部分带来挑战。我们介绍了LoG-CAN,这是一个具有全球级觉(GCA)模块和遥感图像当地级觉(LA)模块的多尺度语义分解网络。具体地说,GCA模块记录了等级背景模型的全球表现,以规避背景干扰;LCA模块生成地方级代表,作为中等意识元素,间接将像素与全球级代表联系起来,以减少一个类别的差异;与GCA和LCA模块的多尺度结构通过分级改进和地貌融合在不同尺度上产生有效的物体分解。通过对ISPRS Vaihingen数据集和ISSPRS Potsdam数据集的评估,实验结果表明,LG-CAN在一般语系分解方面超越了状态-艺术方法,同时大大降低了网络参数和计算。代码可在以下查阅:{href{https://github.com/xwaxwmaxwaxmasment/asmentmentmentation.</s>