We study the space complexity of the two related fields of differential privacy and adaptive data analysis. Specifically, (1) Under standard cryptographic assumptions, we show that there exists a problem P that requires exponentially more space to be solved efficiently with differential privacy, compared to the space needed without privacy. To the best of our knowledge, this is the first separation between the space complexity of private and non-private algorithms. (2) The line of work on adaptive data analysis focuses on understanding the number of samples needed for answering a sequence of adaptive queries. We revisit previous lower bounds at a foundational level, and show that they are a consequence of a space bottleneck rather than a sampling bottleneck. To obtain our results, we define and construct an encryption scheme with multiple keys that is built to withstand a limited amount of key leakage in a very particular way.
翻译:我们研究了不同隐私和适应性数据分析这两个相关领域的空间复杂性。具体地说,(1) 在标准的加密假设下,我们表明存在一个问题P, 与无隐私所需的空间相比,需要以差异性隐私和无隐私所需的空间来以惊人的更多空间有效解决。据我们所知,这是将私人和非私人算法的空间复杂性区分开来的第一个问题。(2) 适应性数据分析的工作重点是了解回答一系列适应性查询所需的样本数量。我们在基础层面重新审视以前的较低界限,并表明它们是空间瓶颈而不是抽样瓶颈的结果。为了获得我们的结果,我们定义和构建了一个加密计划,其密钥是用来以非常特殊的方式承受有限的关键渗漏。